2020 年秋季学期课程期末考试试卷答题纸

课程名称:		高等代数 I			课程代	码:	MATH120011.04	
卷	别:	■A 卷	□B 卷	□C 卷				
姓	名:				学	号:_		

我已知悉学校与考试相关的纪律以及违反纪律的后果,并将严守纪律,不作弊,不抄袭,独立答题。

学生(签名):

年 月 日

题	1	2	3	4	5	6	7	总分
号	(10分)	(10分)	(15分)	(15分)	(15分)	(17分)	(18 分)	(100分)
得								
分								

注意:

- 请遵守复旦大学考场规定。
- 请用英文或中文答题。
- 书写答案应尽量工整,避免字迹潦草难以辨认。
- 前8页为题目及答题纸,请把答案写在前8页或其背面。
- 后4页为草稿纸,可以撕下,交卷时应一并上交。
- 计算题只需写下结果,不用写过程。
- 证明题需提供必要的论证过程。

1. (10 points) Let
$$A = \begin{bmatrix} -1 & -2 & 0 \\ -1 & 0 & 2 \\ -1 & -1 & 1 \end{bmatrix}$$
; let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$; let $\vec{b}_1 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ and $\vec{b}_2 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$;

- (1) find all solutions of the system $A\mathbf{x} = \vec{b}_1$; (2) find all solutions of the system $A\mathbf{x} = \vec{b}_2$.

2. (10 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation, given by the 3×3 matrix A:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}.$$

Let
$$\mathfrak{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\},$$

- (1) show that \mathfrak{B} is a basis of \mathbb{R}^3 ;
- (2) find $[T]_{\mathfrak{B}}$, which is a 3×3 matrix.

(1) Let
$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
, find det A :

- (1) Let $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$, find det A;

 (2) let $B = \begin{bmatrix} 0 & 0 & c_0 \\ 1 & 0 & c_1 \\ 1 & 1 & c_2 \end{bmatrix}$, find its characteristic polynomial det(xI B);
- (3) Find an $n \times n$ matrix C so that its characteristic polynomial

$$\det(xI - C) = x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0},$$

Prove it.

4. (15 points) Let $T:V\to W$ be linear transformation between two finite dimensional $\mathbb R$ vector spaces. Show that

 $\dim \operatorname{Null}(T) + \dim \operatorname{Range}(T) = \dim V.$

- **5.** (15 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by $A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$,
 - (1) we know $c_1 = 1$ is an eigenvalue of A; find the other eigenvalue c_2 ; further for each eigenvalue c_1 and c_2 , find one of its associated eigenvector;
 - (2) write the minimal polynomial of A as $p(x) = (x c_1)(x c_2)$; let $p_i(x) = (x c_i)$. Show that each $\text{Null}(p_i(x)|_{x=A})$ is the span of one of the eigenvectors found;
 - (3) Following Theorem 12 of Section 6, we know that there are projections E_1 and $E_2: \mathbb{R}^2 \to \mathbb{R}^2$ so that

$$T = c_1 E_1 + c_2 E_2.$$

Find the matrix forms A_1 and A_2 , of E_1 and E_2 , respectively; verify the above identity.

Let A be an $n \times n$ matrix. We know that the row space (resp. column space) of A is the span of the row vectors (resp. column vectors) of A; the row rank of A is the dimension of its row space, same to the column rank. Answer the following question; when asked why, give a brief reason.

- **6.** (17 points) Let A' be derived from A via a sequence of row operations. Answer the following questions:
 - (1) Are the row spaces of A and A' the same? Do they have identical dimensions? Why?
 - (2) Are the column spaces of A and A' the same? Do they have identical dimensions? Why?
 - (3) In case A' is in Echelon form, how to read the row rank of A'? and how to read off the column rank A'?

7. (18 points) Let $T: \mathbb{R}^6 \to \mathbb{R}^6$ be a linear transformation, having characteristic polynomial

$$f(x) = (x-1)^3(x+1)^3.$$

Let $W_{\pm} = \text{Null}((T \pm I)^3)$. Show that

- (1) W_{-} and W_{+} are T invariant, namely $T(W_{\pm}) \subset W_{\pm}$; (2) $\mathbb{R}^{6} = W_{-} \oplus W_{+}$.