
期中试卷讲解

填空题（1）

一个栈的进栈序列是A、B、C，写出所有可能的出栈序列____。

答：ABC，ACB，BAC，BCA，CBA

栈：先进后出
1. 先出A
2. 先出B
3. 先出C

进栈序列有 n 个元素，那么出栈序列就有 𝐶2𝑛
𝑛 −𝐶2𝑛

𝑛+1 种情况

队列？双端队列？

填空题（2）

用数组q[1…m]表示的顺序存储队列，队列中元素个数最多为m，用front表示队头指针，
指向队头元素的前一位置，初值为0，用rear表示队尾指针，指向队尾元素，判断队列
发生假溢出的条件用C/C++语言语法表达为________________________。

答：(rear==m) && (front!=0)

什么是假溢出？----队列存储区未满时发生溢出的现象

1 2

front rear

填空题（2）

用数组q[1…m]表示的顺序存储队列，队列中元素个数最多为m，用front表示队头指针，
指向队头元素的前一位置，初值为0，用rear表示队尾指针，指向队尾元素，判断队列
发生假溢出的条件用C/C++语言语法表达为________________________。

答：(rear==m) && (front!=0)

什么是假溢出？----队列存储区未满时发生溢出的现象

1 2 3 4 5

front rear

填空题（2）

用数组q[1…m]表示的顺序存储队列，队列中元素个数最多为m，用front表示队头指针，
指向队头元素的前一位置，初值为0，用rear表示队尾指针，指向队尾元素，判断队列
发生假溢出的条件用C/C++语言语法表达为________________________。

答：(rear==m) && (front!=0)

什么是假溢出？----队列存储区未满时发生溢出的现象

2 3 4 5

front rear

填空题（2）

用数组q[1…m]表示的顺序存储队列，队列中元素个数最多为m，用front表示队头指针，
指向队头元素的前一位置，初值为0，用rear表示队尾指针，指向队尾元素，判断队列
发生假溢出的条件用C/C++语言语法表达为________________________。

答：(rear==m) && (front!=0)

什么是假溢出？----队列存储区未满时发生溢出的现象

2 3 4 5

front rear

解决方法：循环队列

填空题（3）

广义表GL = ((a, b, c), (d, e, f))，假设求表头操作为Head，求表尾操作为Tail，则f =
_________。

答：head[tail[tail[head[tail[GL]]]]]

1. 取表尾：tail[GL] = ((d, e, f))

2. 取 tail[GL] 的表头：head[tail[GL]] = (d, e, f)

3. 取 head[tail[GL]] 的表尾：tail[head[tail[GL]]] = (e, f)

4. 取 tail[head[tail[GL]]] 的表尾：tail[tail[head[tail[GL]]]] = (f)

5. 取 tail[tail[head[tail[GL]]]] 的表头： head[tail[tail[head[tail[GL]]]]] = f

填空题（4）

已知数组A[1…10, 1…10]为对称矩阵，其中每个元素占5个单元。现将其下三角部分
按行优先次序存储在起始地址为1000的连续内存单元中，则元素A[5][6]对应的地址为
__________。

答：1095

1000 + 19 * 5 = 1095

填空题（5）

算术表达式(x+y)/10+a*b/c-(x-y)*(a-b)转为后缀表达式后为 。
答：xy+10/ab*c/+xy-ab-*-

(x+y)/10+a*b/c-(x-y)*(a-b)

填空题（5）

(x+y)/10+a*b /c-(x-y)*(a-b)
扫描元素 栈状态 输出队列 说明

((空 (压栈

x (x x 入队

+ (+ x + 压栈

y (+ xy y入队

) 空 xy+ +入队，(弹出丢弃

/ / xy+ /压栈

10 / xy+10 10入队

+ + xy+10/ 栈顶/优先级高于+，
弹出/入队，再压+

… … … …

填空题（6）

具有4个结点的不同二叉树形态共有______棵。
答：14或者是14*4! = 336

卡特兰数公式：𝐶𝑛 =
1

𝑛+1

2𝑛 !

𝑛!·𝑛!

填空题（7）

完全二叉树的第6层（根为第1层）有8个叶结点，则该树最多有______个结点。

答：26 − 1 + 25 − 8 ∗ 2 = 63 + 24 ∗ 2 = 63 + 48 = 111

填空题（8）

树的后根次序遍历和它通过左孩子-右兄弟方法转换的二叉树的_______遍历是等价的。

答：中序

填空题（9）

将关键码序列{16, 53, 23, 94, 31, 72}转换为最大堆，所形成的二叉树最后一个叶
结点的值为____________。

答：23

填空题（10）

已知一棵树以左孩子-右兄弟链表的形式存储，其结点结构说明如下：
struct node {
int data;
struct node *firstchild;
struct node *nextsibling;

};
请在下面的__________处进行填空。注意：只能填一个语句，多填为0分。

//求出以T为根的树结点个数
int size(struct node *T) {

if (T == NULL)
return 0;
else

}
答：return (1+size(T->firstchild)+size(T-> nextsibling));

答：就是m个数中选k个数的组合，时间复杂度为O (𝐶𝑚−1
𝑘−1)（即 O ((m-1)!/[(k-1)!・(m-k)!])）。

问答题 1、分析以下函数的算法时间复杂度公式表达（规定m>k>1），并说明推算依据。

void f(int a[], int m, int k) {

for (int i=m; i>=k; i--) {

a[k-1]=i;

if (k>1) f(a, i-1,k-1);

else print(a);

}

}

答：穷举模式匹配算法的时间复杂度为O(m*n)（其中，m为模式串长度，n为目标串长度）。KMP算法有一定改进，
时间复杂度达到O(m+n)。本题也可采用从后面匹配的方法，即从右向左扫描，比较6次成功。另一种匹配方式是
从左往右扫描，但是先比较模式串的最后一个字符，若不等，则模式串后移；若相等，再比较模式串的第一个
字符，若第一个字符也相等，则从模式串的第二个字符开始向右比较，直至相等或者失败。若失败，模式串后
移，再重复以上过程。按这种方法，本题比较18次成功。

问答题 2、设目标串T=“xxyxxxyxxxxyxyx”，模式串P=“xxyxy”。如何用最少的比较次数找到P在T中第一次
出现的位置？相应的比较次数是多少？请给出具体的分析过程。

(1) 可以唯一确定一棵二叉树形态的序列组合：

• 前序遍历序列+中序遍历序列

• 后序遍历序列+中序遍历序列

• 层次序遍历序列+中序遍历序列

不可以唯一确定一棵二叉树的形态的序列组合：

• 前序遍历序列+后序遍历序列

• 层次序遍历序列+前序遍历序列

• 层次序遍历序列+后序遍历序列

问答题 3、 请分析并回答以下问题：

(1) 在一棵二叉树的前序遍历序列、中序遍历序列、后序遍历序列和层次序遍历序列中，任意两种序列的组合可

以唯一地确定这棵二叉树吗？若不可以，有哪些组合。请说明理由。

(2) 已知一个森林的先根次序遍历序列和后根次序遍历序列分别为 ABCDEFGHIJKLMNO 和

CDEBFHIJGAMLONK， 请构造出该森林。

中序遍历按照左子树、根节点、右子树的顺序遍历二叉树。
因此，中序遍历可以帮助我们在树中找出每个结点的左右子
树的结构。 中序遍历提供了关于树结点之间相对顺序的关键
信息，并且能够明确划分每个结点的左右子树。

前序遍历 + 中序遍历

•前序遍历的顺序是根结点 → 左子树 → 右子树，我们可以从前序遍历中直接获取根结点。

•结合中序遍历，我们知道该根结点在中序遍历中的位置，进而可以通过分割中序遍历得到左子树和右子树的结点。

•递归构建路径：一旦知道根节点，剩下的树就是左右子树的问题，而中序遍历清晰地标明了左子树和右子树的节点。

中序遍历：D B E A F C

前序遍历：A B D E C F

步骤 1：前序遍历的第一个节点是 A，所以 A 是根节点。

步骤 2：在中序遍历中，A 的左子树是 {D, B, E}，右子树是 {F, C}。

步骤 3：在前序遍历中，接下来的节点 B 是左子树的根节点，C 是右子树的根节点，进一步递归下去，直到整个

树的结构完整。

A

B C

D E F

后序遍历 + 中序遍历

•后序遍历的顺序是左子树 -> 右子树 -> 根节点，这意味着我们可以通过后序遍历的最后一个节点来确定根节点。
•结合中序遍历，我们同样可以通过根节点在中序遍历中的位置来分割树，进一步递归地确定左右子树。

中序遍历：D B E A F C

后序遍历：D E B F C A

步骤 1：后序遍历的最后一个节点是 A，所以 A 是根节点。
步骤 2：在中序遍历中，A 的左子树是 {D, B, E}，右子树是 {F, C}。
步骤 3：在后序遍历中，接下来的节点 B 是左子树的根节点，C 是右子树的根节点。递归下去，最终还原出整棵树。

A

B C

D E F

层次遍历 + 中序遍历

•层次遍历是从上到下、从左到右的顺序依次遍历节点，反映了节点的父子关系。通过层次遍历，我们能够得知树的
层级顺序以及每个节点的父节点。
•结合中序遍历，能够帮助我们划分左右子树，进而确定树的结构。

中序遍历：D B E A F C

层次遍历：A B C D E F

步骤 1：层次遍历的第一个节点是 A，所以 A 是根节点。
步骤 2：根据中序遍历，A 的左子树是 {D, B, E}，右子树是 {F, C}。
步骤 3：层次遍历中，B 和 C 是 A 的子节点，D 和 E 是 B 的子节点，F 是 C 的子节点，最终确定整个树的结构。

结合中序遍历和其他任意一种遍历（前序、后序或层次遍历）都能唯一确定一棵二叉树，原因在于：
•中序遍历能够帮助我们清晰地知道每个节点的左右子树。

•其他遍历（前序、后序、层次遍历）能够提供足够的父子关系和层级信息，帮助我们进一步确定树的结构。

A

B C

D E F

前序遍历和后序遍历组合

前序遍历可以给出根节点，但后序遍历没有明确的区分左右子树的界限，因此，可能会存在不同的二叉树结构。

前序遍历：A B C

后序遍历：C B A

前序遍历和层次遍历组合

虽然前序遍历能给出根节点的位置，但层次遍历提供的信息过于宽泛，可能导致不同的二叉树结构。层次遍历可能不能唯一
地决定左右子树的划分。

前序遍历：A B C

层次遍历：A B C

A

B C

A

B

C

可以构造两棵不同的二叉树
后序遍历和层次遍历组合

后序遍历和层次遍历都没有足够的信息来区分左右子树的位置。

后序遍历：B C A

层次遍历：A B C

(2) 已知一个森林的先根次序遍历序列和后根次序遍历序列分别为ABCDEFGHIJKLMNO 和
CDEBFHIJGAMLONK， 请构造出该森林

PPT第五章树与二叉树

树 → 二叉树
左子结点 → 左子结点
兄弟结点 → 右子结点

二叉树的先序遍历和中序遍历分别为 ABCDEFGHIJKLMNO 和 CDEBFHIJGAMLONK

ABCDEFGHIJKLMNO

CDEBFHIJGAMLONK

A

B K

C F L

D

E

G

H

I

J

M N

O

问答题 4、己知二叉树如下所示：

（1）用有向弧表示前驱和后继线索，画出树上的中序线索；

（2）在树上删除结点 E，画出改变后的中序线索化二叉树及其中的线索。

问答题 4、己知二叉树如下所示：

（1）用有向弧表示前驱和后继线索，画出树上的中序线索；

（2）在树上删除结点 E，画出改变后的中序线索化二叉树及其中的线索。

参考答案

问答题 4、己知二叉树如下所示：

（1）用有向弧表示前驱和后继线索，画出树上的中序线索；

（2）在树上删除结点 E，画出改变后的中序线索化二叉树及其中的线索。

参考答案

问答题5 用于通信的电文由8个字符组成{a, b, c, d, e, f, g, h}，字符在电文中出现的频率分别为6, 18, 1, 5, 31, 2, 20, 9。试为这
8个字符设计哈夫曼编码。使用0~7的3位等长二进制表示形式是另一种编码方案，对于上述实例比较两种方案的优缺点。

1, 2, 5, 6, 9, 18, 20, 31

1 2

3 5

8 6

14 18 20

38

9

23

54

1, 2, 5, 6, 9, 18, 20, 31 3, 5, 6, 9, 18, 20, 31

8, 6, 9, 18, 20, 31 14, 9, 18, 20, 31 23, 18, 20, 31 23, 38, 31

31

92

38, 54 92

频数 6 18 1 5 31 2 20 9

哈夫曼 0001 10 000000 00001 01 000001 11 001

等长码 000 001 010 011 100 101 110 111

• 哈夫曼编码方案的带权路径长度为：
• (1+ 2) * 6 + 5 * 5 + 6 * 4 + 9 * 3 +

(18+ 20 + 31)*2 =232

1 2

3 5

8 6

14 18 20

38

9

23

54

31

92

问答题5 用于通信的电文由8个字符组成{a, b, c, d, e, f, g, h}，字符在电文中出现的频率分别为6, 18, 1, 5, 31, 2, 20, 9。试为这
8个字符设计哈夫曼编码。使用0~7的3位等长二进制表示形式是另一种编码方案，对于上述实例比较两种方案的优缺点。

0
1

1

11

1

1

1

0

0

0

0

0

0

• 等长二进制编码方案的带权路径长度为：
• (6+18+1+5+31+2+20+9)*3 = 276

频数 6 18 1 5 31 2 20 9

哈夫曼 0001 10 000000 00001 01 000001 11 001

等长码 000 001 010 011 100 101 110 111

问答题5 用于通信的电文由8个字符组成{a, b, c, d, e, f, g, h}，字符在电文中出现的频率分别为6, 18, 1, 5, 31, 2, 20, 9。试为这
8个字符设计哈夫曼编码。使用0~7的3位等长二进制表示形式是另一种编码方案，对于上述实例比较两种方案的优缺点。

Huffman
优点
•平均码长更短（本例约 2.52 vs 3），压缩更好，接近最优前缀码。
•高频字符码字很短，效率高。

缺点

•需要保存/约定码表（或重建树），实现复杂度更高。
•变长码不便于随机访问、同步；一处比特错误可能导致后续解码“跑偏”。

3 位等长编码
优点
•编码/解码极其简单，固定 3 位直接查表。
•易同步、易随机访问；错误一般局部影响（不会像变长码那样严重失步）。
缺点
•不利用频率差异，压缩效果差

• 哈夫曼编码方案的带权路径长度为：
• (1+ 2) * 6 + 5 * 5 + 6 * 4 + 9 * 3 +

(18+ 20 + 31)*2 =232

• 等长二进制编码方案的带权路径长度为：
• (6+18+1+5+31+2+20+9)*3 = 276

算法题1、写一个算法，对输入的十进制非负整数num，将它的R (1<R<10)进制表示打印出来。要求算法

中用到的栈采用单链表存储结构，单链表的结点类型为Node，其中，data域存放数据，link为指向后继

结点的指针域。

基本思想：
采用辗转相除法，将num对应的R进制的各位数字进栈（采用头插法），然后依次出栈打印。

算法题1、写一个算法，对输入的十进制非负整数num，将它的R (1<R<10)进制表示打印出来。要求算法

中用到的栈采用单链表存储结构，单链表的结点类型为Node，其中，data域存放数据，link为指向后继

结点的指针域。

错误类型：
（1）采用尾插法

算法题1、写一个算法，对输入的十进制非负整数num，将它的R (1<R<10)进制表示打印出来。要求算法

中用到的栈采用单链表存储结构，单链表的结点类型为Node，其中，data域存放数据，link为指向后继

结点的指针域。

错误类型：
（2）直接使用栈来做

算法题2、已知n个结点的完全二叉树以二叉树的数组存储方式存储在数组a中，p、q为二叉树的两个不

同的结点在a中的下标，设计函数“int nearestAncestor(int *a, int p, int q)”返回这两个结点的最近公共祖先

结点在a中的下标。（注：最近公共祖先结点是p和q公共祖先中层数最大的结点）。（15分）

解题思路：

• 以完全二叉树形式保存二叉树，求某结点（数组编号为i）的祖先，如果此结点的序号i，则其双
亲结点为i/2。

• 求祖先结点可以通过分别从p, q开始向上逐层找双亲结点，如果当前的两个双亲结点不同，则从
层次较大的结点开始继续找上一层的双亲，第一个相同的双亲就是最近公共祖先。

算法题2、已知n个结点的完全二叉树以二叉树的数组存储方式存储在数组a中，p、q为二叉树的两个不

同的结点在a中的下标，设计函数“int nearestAncestor(int *a, int p, int q)”返回这两个结点的最近公共祖先

结点在a中的下标。（注：最近公共祖先结点是p和q公共祖先中层数最大的结点）。（15分）

参考答案

算法题3 给定指向二叉树根结点的指针root，二叉树为二叉链表存储方式（每个结点中有left和right两个指针指向
左右孩子，整型的data属性中保存结点关键码），对于包含n个结点的二叉树，假设其中各个结点的关键码互相不
重复，写出递归和非递归两种算法找到结点关键码的最大值，试对两种算法的性能进行比较分析。（15分）

#include <iostream>

#include <stack>

#include <climits>

using namespace std;

struct Node {

int data;

Node* left;

Node* right;

};

/******************** 递归************************/

int maxValueRecursive(Node* root) {

if (!root) return INT_MIN;

int leftMax = maxValueRecursive(root->left);

int rightMax = maxValueRecursive(root->right);

return max(root->data, max(leftMax, rightMax));

}

/********************非递归*******************/

int maxValueIterative(Node* root) {

if (!root) return INT_MIN;

int ans = INT_MIN;

stack<Node*> st;

st.push(root);

while (!st.empty()) {

Node* cur = st.top();

st.pop();

ans = max(ans, cur->data);

if (cur->right) st.push(cur->right);

if (cur->left) st.push(cur->left);

}

return ans;

}

根节点入栈

弹出栈顶节点
（当前处理的节点）

更新最大值

子节点入栈

算法题3 给定指向二叉树根结点的指针root，二叉树为二叉链表存储方式（每个结点中有left和right两个指针指向
左右孩子，整型的data属性中保存结点关键码），对于包含n个结点的二叉树，假设其中各个结点的关键码互相不
重复，写出递归和非递归两种算法找到结点关键码的最大值，试对两种算法的性能进行比较分析。（15分）

典型错误

// 错误写法：max是值传递
int maxValueRecursive(Node* root, int max) {

if (!root) return max; // 空节点返回当前max

// 步骤1：更新当前层的max（仅修改局部副本）
max = std::max(max, root->data);

// 步骤2：递归遍历左右子树
max = maxValueRecursive(root->left, max); // 传值给左子树
max = maxValueRecursive(root->right, max); // 传值给右子树

return max;

}

void maxValueRecursive(Node* root, int& max) { // 无需返回值，直
接修改引用

if (!root) return;

// 步骤1：更新全局max（引用指向外层变量，所有层级共享）
if (root->data > max) {

max = root->data;

}

// 步骤2：递归遍历左右子树（修改的是同一个max）
maxValueRecursive(root->left, max);

maxValueRecursive(root->right, max);

}

	Slide 1: 期中试卷讲解
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: 问答题5 用于通信的电文由8个字符组成{a, b, c, d, e, f, g, h}，字符在电文中出现的频率分别为6, 18, 1, 5, 31, 2, 20, 9。试为这8个字符设计哈夫曼编码。使用0~7的3位等长二进制表示形式是另一种编码方案，对于上述实例比较两种方案的优缺点。
	Slide 29
	Slide 30
	Slide 31: 算法题1、写一个算法，对输入的十进制非负整数num，将它的R (1<R<10)进制表示打印出来。要求算法中用到的栈采用单链表存储结构，单链表的结点类型为Node，其中，data域存放数据，link为指向后继结点的指针域。
	Slide 32: 算法题1、写一个算法，对输入的十进制非负整数num，将它的R (1<R<10)进制表示打印出来。要求算法中用到的栈采用单链表存储结构，单链表的结点类型为Node，其中，data域存放数据，link为指向后继结点的指针域。
	Slide 33: 算法题1、写一个算法，对输入的十进制非负整数num，将它的R (1<R<10)进制表示打印出来。要求算法中用到的栈采用单链表存储结构，单链表的结点类型为Node，其中，data域存放数据，link为指向后继结点的指针域。
	Slide 34: 算法题2、已知n个结点的完全二叉树以二叉树的数组存储方式存储在数组a中，p、q为二叉树的两个不同的结点在a中的下标，设计函数“int nearestAncestor(int *a, int p, int q)”返回这两个结点的最近公共祖先结点在a中的下标。（注：最近公共祖先结点是p和q公共祖先中层数最大的结点）。（15分）
	Slide 35: 算法题2、已知n个结点的完全二叉树以二叉树的数组存储方式存储在数组a中，p、q为二叉树的两个不同的结点在a中的下标，设计函数“int nearestAncestor(int *a, int p, int q)”返回这两个结点的最近公共祖先结点在a中的下标。（注：最近公共祖先结点是p和q公共祖先中层数最大的结点）。（15分）
	Slide 36
	Slide 37

